亚洲影视久久,福利小视频在线播放,国产91精品新入口,激情视频在线播放,欧美综合激情,成人网在线免费观看,国产成人综合在线观看

三角形內(nèi)切圓的性質(zhì)

回答
瑞文問答

2024-08-31

與三角形三邊都相切的圓叫做三角形的內(nèi)切圓,圓心叫做三角形的內(nèi)心,三角形叫做圓的外切三角形,三角形的內(nèi)心是三角形三條角平分線的交點。

擴展資料

  性質(zhì)

  三邊與圓相切

  圓心與三頂點連線分辨平分三角

  半徑x三邊和/2=三角形面積

  三角形內(nèi)切圓概念

  三角形一定有內(nèi)切圓,其他的圖形不一定有內(nèi)切圓(一般情況下,n邊形無內(nèi)切圓,但也有例外,如對邊之和相等的四邊形有內(nèi)切圓。),且內(nèi)切圓圓心定在三角形內(nèi)部。

  在三角形中,三個角的角平分線的交點是內(nèi)切圓的圓心,圓心到三角形各個邊的垂線段相等。

  內(nèi)切圓的半徑為r=2S/C,當(dāng)中S表示三角形的面積,C表示三角形的周長。

  三角形內(nèi)切圓半徑公式

  1、三角形內(nèi)切圓半徑:r=2S/(a+b+c);

  2、三角形外接圓的半徑:R=abc/4S。

  其中,S為三角形的面積,a,b,c分別為三角形的三邊。

原阳县| 合江县| 玉田县| 鹤庆县| 枣阳市| 阿勒泰市| 尚义县| 普兰店市| 抚松县| 桂林市| 南安市| 台南市| 叶城县| 七台河市| 阿尔山市| 南阳市| 郴州市| 东港市| 辽阳县| 个旧市| 定结县| 伊川县| 泰顺县| 平顺县| 思南县| 株洲县| 墨玉县| 米林县| 尚志市| 怀柔区| 香港 | 西畴县| 凤阳县| 临邑县| 隆林| 阳城县| 晋城| 南部县| 清镇市| 蒙自县| 米泉市|